Aminoacyl and Dihydro-derivatives of Isocytidine and Isocytosine

By Vinko Škarić,* Goran Laćan, and Djurdja Škarić, Laboratory of Stereochemistry and Natural Products, Institute Rugjer Bošković, 41001 Zagreb, Croatia, Yugoslavia

Isocytosine and 2'.3'-O-protected isocytidines were coupled with appropriately protected L-phenylalanine. glycine. or glycylglycine yielding the corresponding 2-N-aminoacyl-isocytosines and -isocytidines. The mode of hydrolysis of 2-N-(N-t-butoxycarbonyl-L-phenylalanyl)isocytidine (5) with trifluoroacetic acid. to give 2-N-L-phenylalanylisocytosine (17). and minor amounts of unexpected 5'-O-phenylalanyl derivatives. (18) and (19). was shown to depend on the reaction conditions.

Catalytic hydrogenation of 2'.3'-O-ethoxymethyleneisocytidine (9), the 2-N-aminoacylisocytidines (5) and (7). and 2-N-glycylglycylisocytosine (15) over 5% rhodium-carbon gave the corresponding 5.6-dihydro-derivatives (20), (23), (22), and (21) in quantitative yields.

ISOCYTIDINE ¹ and isocytosine ² are of both biophysical and biochemical interest. The unusual crystals of isocytosine, containing two tautomers in an exact 1:1ratio,³ show ready proton migration in the presence of water vapour, and transmit currents enormously greater than those usually associated with organic semiconductors.⁴ U.v. spectroscopic data⁵ and the X-ray

¹ D. H. Brown, Sir A. R. Todd, and S. Varadarajan, J. Chem. Soc., 1957, 868.

² M. Stimson and M. J. O'Donell, J. Amer. Chem. Soc., 1952, 74, 1805.

⁸ B. D. Sharma and J. F. McConnell, Acta Cryst., 1965, **19**, 797. ⁴ J. M. Thomas, J. R. N. Evans, and T. J. Lewis, Discuss. Faraday Soc., 1971, **51**. 73. crystal structure of 5,6-dihydroisocytidine monohydrate have revealed the molecule to exist as the aminotautomer state.⁶ The utilization of isocytidine by living cells as a pyrimidine source,⁷ the great quantities of aminoacyl and peptidyl components firmly bound to deoxyribonucleic acids in tumours,⁸ and the possible ' punctuation' role of such components in the genetic

⁵ V. Škarić, B. Gašpert, M. Hohnjec, and G. Laćan, *J.C.S. Perkin I*, 1974, 267.

⁶ B. Kojić-Prodić, Ž. Ružić-Toroš, and E. Coffou, Acta Cryst., 1976, **B32**, 1103.

⁷ J. Doskočil, A. Holý, and J. Filip, *Nucleic Acid Res.*, 1974, **1**, 1209.

⁸ J. S. Salser and M. E. Balis, Cancer Res., 1968, 28, 595.

code⁹ (acting as 'derepressors' of structural genes¹⁰) directed our studies towards the synthesis of 2-*N*-aminoacyl-isocytidine and -isocytosine derivatives.

Acetylation of 2',3'-O-isopropylidene isocytidine ^{1,11} with 1 equiv. of acetic anhydride yielded the 2-Nacetyl derivative (2) (73.2%) and only 30.7% of the 2-N,5'-O-diacetyl derivative (3). The successful separation of the 2-N-acetylisocytidine (2) encouraged us to attempt the preparation and separation of 2-N-aminoacyl derivatives. Thus, 2-N-(N-benzyloxycarbonyl-DL-phenylalanyl)- (4), 2-N-(N-t-butoxycarbonylphenylalanyl)- (5), and 2-N-(N-t-butoxycarbonylglycyl)- (7) 2',3'-O-isopropylideneisocytidines were

- (12) $R^1 = H, R^2 = Boc-L-Phe$
- 2',3'-O-CHOEt derivatives
- (9) $R^1 = R^2 = H$
- (10) $R^1 = H, R^2 = Boc-L-Phe$
- (20) $R^1 = R^2 = H$; 5,6-dihydro

2', 3'-O-CMe₂ derivatives

(1) $R^1 = R^2 = H$ (2) $R^1 = H, R^2 = Ac$ (3) $R^1 = R^2 = Ac$ (4) $R^1 = H, R^2 = Z-DL-Phe$ (5) $R^1 = H, R^2 = Boc-L-Phe$ (6) $R^1 = R^2 = Boc-L-Phe$ (7) $R^1 = H, R^2 = Boc-Gly$ (8) $R^1 = R^2 = Boc-Cly$ (11) $R^1 = Ac, R^2 = Boc-L-Phe$ (13) $R^1 = H, R^2 = (Gly)_2CPh_3$ (16) $R^1 = H, R^2 = L-Phe, CF_3CO_2H$ (18) $R^1 = Boc-L-Phe, R^2 = H$ (19) $R^1 = L-Phe, CF_3COH, R^2 = H$ (22) $R^1 = H, R^2 = Boc-Gly; 5,6-dihydro$ $(23) <math>R^1 = H, R^2 = Boc-HNCHCO; 5,6-dihydro$ $<math>C_8H_{11}CH_2$

 $Z = PhCH_2 \cdot O \cdot CO$ Boc = Bu^tO \cdot CO

easily separated (63-67%) from the reaction of the isocytidine (1) with appropriately protected DL-phenylalanine, L-phenylalanine, or glycine in the presence of dicyclohexylcarbodi-imide.¹² The 2-N,5'-O-bis-Lphenylalanyl (6) and diglycyl (8) derivatives were isolated

⁹ A. Bendick and H. Rosenkranz, Progr. Nucleic Acid Res., 1963, 1, 219.

¹⁰ M. E. Balis, J. S. Salser, and A. Elder, *Nature*, 1964, 203, 1170.

¹¹ I. L. Doerr and J. J. Fox, J. Org. Chem., 1967, 32, 1462.
¹² J. C. Sheehan and G. P. Hess, J. Amer. Chem. Soc., 1955, 77, 1067.

¹³ N. Baggett, A. B. Foster, and J. M. Webber, *Chem. and Ind.*, 1965, 136.

¹⁴ Z. A. Šavarova, N. I. Sokolova, L. A. Boykova, M. A. Prokofiev, *Zhur. obschei Khim.*, 1959, **29**, 2917.

in 17—20% yield. The de-O-acetylation of these byproducts is exemplified by the hydrolysis with concentrated ammonia-dioxan (1:1) of the 2-N,5'-O-bis-(aminoacyl)isocytidine (6) to give the 2-N-aminoacyl derivative (5). Acetylation of compound (5) yielded 5'-O-acetyl-2',3'-O-isopropylidene-2-N-(N-t-butoxycarbonyl-L-phenylalanyl)isocytidine (11).

Aminoacylation of the hitherto unknown acid-labile 2',3'-O-ethoxymethyleneisocytidine (9) conveniently afforded the corresponding 2-N-(N-t-butoxycarbonyl-L-phenylalanyl) derivative (10) in 71% yield. The n.m.r. spectra of the 2',3'-O-ethoxymethylene ribonucleosides (9) and (10) agree with those reported for the diastereo-isomeric 2',3'-O-benzylidene nucleosides.¹³

In contrast to earlier investigations of cytidine,¹⁴ the coupling reactions of unprotected isocytidine, with NN'-dicyclohexylcarbodi-imide as condensing agent, afforded numerous side products and only a 17% yield of 2-N-(N-t-butoxycarbonyl-L-phenylalanyl)isocytidine (12). 2',3'-O-Isopropylidene-2-N-(N-triphenylmethylglycylgly-cyl)isocytidine (13) was also obtained, in poor yield, when the hydroxysuccinimido-ester of N-triphenylmethylglycylglycine ¹⁵⁻¹⁷ was coupled with 2',3'-O-isopropylideneisocytidine. However, isocytosine was converted into 2-N-(N-triphenylmethylglycylglycyl)isocytosine (14) in 80% yield. Detritylation of compound (14) with 50% acetic acid gave 2-N-glycylglycylisocytosine (15).

Treatment of compound (5) with 98% trifluoroacetic acid at -12 °C for 5 min afforded crystalline 2',3'-Oisopropylidene-2-N-L-phenylalanylisocytidine trifluoroacetate salt (16). $N \rightarrow O$ -Acyl migration brought about by strong acids has been widely investigated.¹⁸⁻²⁰ In our experience hydrolysis of compound (5) with 98%trifluoroacetic acid at 23 °C for 5 min led to cleavage of the N-glycosyl bond and isolation of 2-N-L-phenylalanylisocytosine (17). The formation of minor amounts 5'-O-(N-t-butoxycarbonyl-L-phenylalanyl)-2',3'-Oof isopropylideneisocytidine (18) and 5'-O-L-phenylalanyl-2',3'-O-isopropylideneisocytidinetrifluoroacetate salt (19) can be explained in terms of $2-N \longrightarrow 5'-O$ -aminoacyl migration. The marked influence of the 5'-O-acyl group on the chemical shift of the C-6 proton was of diagnostic value in the identification of aminoacylated products.

In continuation of our studies on the chemistry of ¹⁵ L. Zervas and D. M. Theodoropoulos, J. Amer. Chem. Soc. 1956, **78**, 1359.

¹⁸ G. W. Anderson, J. E. Zimmerman, and F. M. Callahan, J. Amer. Chem. Soc., 1964, **86**, 1839.

¹⁷ V. Škarić, B. Katušin-Ražem, B. Šimunić, and Dj. Škarić, Croat. Chem. Acta, 1975, 47, 603.

¹⁸ L. Josefsson and P. Edman, Biochim. Biophys. Acta, 1957, 25, 614.

¹⁹ G. D. Fasman, Science, 1960, **131**, 420.

²⁰ T. Wakamiya, Y. Tarumi, and T. Shiba, Bull. Chem. Soc. (Japan), 1974. 47, 2686, and references cited therein.

aminopyrimidine nucleosides 5,21 we have found that hydrogenation of 2',3'-O-ethoxymethyleneisocytidine (9), 2-N-glycylglycylisocytosine (15), and the 2-N-glycylisocytidine (8) over 5% rhodium-carbon 22 affords the 5,6-dihydro-derivatives in quantitative yields. Hydrogenation of the 2-N-phenylalanylisocytidine (5) gave 2',3'-O-isopropylidene-2-N-(N-t-butoxycarbonyl-L- β cyclohexylalanyl)-5,6-dihydroisocytidine (23).

EXPERIMENTAL

The same techniques and apparatus were used as previously described.²³ In addition optical rotations were measured for solutions in anhydrous ethanol $(l \ l \ dm)$ with a Zeiss-Winkel 179707 apparatus.

Acetylation of 2',3'-O-Isopropylideneisocytidine¹ (1).—A solution of isocytidine (1) (142 mg, 0.5 mmol) in anhydrous pyridine (3 ml) and acetic anhydride (0.05 ml, 0.5 mmol) was kept at room temperature for 48 h and then evaporated to dryness. Preparative t.l.c. [three developments in methylene chloride-methanol (20:1); eluant acetone] separated starting material (40 mg; $R_{\rm F}$ ca. 0.1); a foam identified as 2-N-acetyl-2',3'-O-isopropylideneisocytidine (2) (86 mg, 73.2% based on transformed isocytidine), m.p. 146-147 °C (from dichloromethane-ether) (lit.,²⁴ 145-148 °C); $R_{\rm F}$ ca. 0.5; $[\alpha]_{D}^{20} - 47.5^{\circ}$ (c 0.54); dried at 80 °C and 10⁻⁵ mmHg (Found: C, 51.4; H, 6.1; N, 12.7. Calc. for $C_{14}H_{19}N_{3}O_{6}$: C, 51.7; H, 5.9; N, 12.9%); λ_{max} 209, 255, and 275sh nm (log ε 4.07, 4.19, and 4.04), λ_{min} 232 nm (log ε 3.81); ν_{max} 3 571br, 3 040, 1 698, 1 642, and 1 587br cm⁻¹; τ (CD₃OD) 1.91 (1 H, d, 6-H; $J_{6.5}$ 8.2 Hz), 4.10 (1 H, d, 5-H; $J_{5.6}$ 8.2 Hz), 7.86 (3 H, s, NAc), 8.45 and 8.65 (2 \times 3 H, s, CMe_2); and the foamy 2-N,5'-O-diacetyl derivative (3) (30 mg, 30.7%), $R_{\rm F}$ ca. 0.7, which was also obtained (169 mg, 92%) from isocytidine (1) (142 mg, 0.5 mmol) with 2 equiv. of acetic anhydride (0.1 ml, 1.0 mmol); $[\alpha]_{n}^{24} - 4.9^{\circ} (c \ 0.8)$ (Found: C, 52.3; H, 6.05; N, 11.7. $C_{16}H_{21}N_3O_7$ requires C, 52.3; H, 5.75; N, 11.45%); λ_{max} . 212, 254, and 273sh nm (log ε 4.04, 4.25, and 4.13), λ_{min} . 232 nm (log ε 3.81); ν_{max} . 3 096, 3 003, 1 730, 1 689, 1 631, and 1 575 cm⁻¹; $\tau(CD_3CD)$ 2.17 (1 H, d, 6-H; $J_{6.5}$ 8.2 Hz), 4.07 (1 H, d, 5-H; J_{5.6} 8.2 Hz), 7.83 (3 H, s, NAc), 7.97 (3 H, s, OAc), and 8.44 and 8.66 $(2 \times 3 \text{ H}, \text{ s}, \text{CMe}_2)$.

2-N-Aminoacylation of Isocytidines.—General procedure. Isocytidine, its 2',3'-O-isopropylidene derivative,¹ or its 2',3'-O-ethoxymethylene derivative (1 mmol) in pyridine (2 ml) was treated at room temperature for 48 h with the N-benzyloxycarbonyl or N-t-butoxycarbonyl derivative of phenylalanine or glycine (1.2 mmol) in the presence of a solution in dioxan (5 ml) of NN'-dicyclohexylcarbodi-imide (1.3 mmol). The precipitate was filtered off and washed with methanol, and the filtrate evaporated to dryness. Preparative t.l.c. (silica gel) [four developments in methylene chloride-methanol (10:1); eluant methanol] separated starting material (ca. 20%) and foamy products ($R_{\rm F}$ ca. 0.4—0.5).

2-N-(N-Benzyloxycarbonyl-DL-phenylalanyl)-2',3'-O-Isopropylideneisocytidine (4) (65%) showed $[\alpha]_{D}^{22} - 8.9^{\circ}$ (c 0.9 in CH₂Cl₂) (Found: C, 61.5; H, 5.8; N, 9.7. C₂₉-H₃₂N₄O₈ requires C, 61.7; H, 5.7; N, 9.9%); λ_{max} . 206, 255, and 287.5 nm (log ε 4.41, 4.22, and 4.18), λ_{min} . 234 and 265

²¹ V. Škarić and J. Matulić, Croat. Chem. Acta, 1975, 47, 159.
²² V. Škarić, B. Gašpert, and M. Hohnjec, J. Chem. Soc. (C), 1970, 2444.

nm (log ϵ 3.99 and 4.13); $\nu_{max.}$ 3 460, 3 344, 2 933, 1 692br, 1 626, 1 570br, and 698 cm^{-1}.

2',3'-O-Isopropylidene-2-N-(N-t-butoxycarbonyl-L-phenylalanyl)isocytidine (5). (a) This product (67%) had m.p. 150—152 °C (from acetone-n-hexane); $R_{\rm F}$ ca. 0.5; $[\mathbf{z}]_{\mathbf{a}}^{18} = -38.2^{\circ}$ (c l) (Found: C, 59.05, H, 6.75; N, 10.4. $C_{26}H_{34}N_4O_8$ requires C, 58.85; H, 6.45; N, 10.55%); $\lambda_{\text{max.}}$ 204, 254.5, and 276 nm (log ε 4.30, 4.26, and 4.20), $\lambda_{\text{max.}}$ 2426 min. 232 and 265 nm (log ε 3.94 and 4.17); $\nu_{max.}$ 3 521, 3 436, 3 145, 3 021, 1 715, 1 681, 1 631br, 1 580br, and 701 cm⁻¹; τ 1.99 (1 H, d, 6-H; $J_{6.5}$ 8.3 Hz), 2.80 (5 H, s, aromatic), 4.12 (1 H, d, 5-H; $J_{5.6}$ 8.3 Hz), 8.37 and 8.63 (2 \times 3 H, s, CMe₂), and 8.64 (9 H, s, Bu^t). 2',3'-O-Isopropylidene-2-N,5'-O-bis-(N-t-butoxycarbonyl-L-phenylalanyl)isocytidine (6) (17%), also obtained from this aminoacylation, showed $R_{\rm F}$ ca. 0.7; $[\alpha]_{D}^{18} = 13.9^{\circ}$ (c 1) (Found: C, 61.95; H, 6.85; N, 9.05. $\tilde{C}_{40}H_{51}N_5O_{11}$ requires C, 61.75; H, 6.6; N, 9.0%); $\lambda_{max.}$ 206.5, 255.5, and 274 nm (log ϵ 4.67, 4.54, and 4.50), $\lambda_{min.}$ 234 and 266 nm. (log ϵ 4.14 and 4.46); $\nu_{max.}$ 3 401, 2 985, 1 754sh, 1 704, 1 639, 1 580, and 699 cm⁻¹; τ 2.38 (1 H, d, 6-H; J_{6.5} 8.3 Hz), 2.75–2.81 (5 H, m, aromatic), 4.08 (1 H, d, 5-H; $J_{5.6}$ 8.3 Hz), 8.41 and 8.67 (2 \times 3 H, s, CMe₂), and ca. 8.60br (2×9 H, Bu^t).

(b) Treatment of the bisaminoacylisocytidine (6) with concentrated ammonia-dioxan (1:1) at room temperature for 4 h gave a crystalline product (73%), m.p. 150-152 °C, identical (mixed m.p. and i.r. spectrum) with the product from (a).

2',3'-O-Isopropylidene-2-N-(N-t-butoxycarbonylglycyl)isocytidine (7). This product (63%) exhibited $[\alpha]_{D}^{22} - 22.6^{\circ}$ (c 0.7) (Found: C, 51.95; H, 6.65; N, 12.7. C₁₉H₂₈N₄O₈ requires C, 51.8; H, 6.4; N, 12.7%); λ_{max} 214, 256, and 273sh nm (log ε 3.94, 4.17, and 4.07), λ_{min} 235 nm (log ε 3.73); ν_{max} 3 401br, 3 125, 2 985, 1 698br, 1 634, and 1 577 cm⁻¹; τ 2.04 (1 H, d, 6-H; $J_{6.5}$ 8.3 Hz), 4.18 (1 H, d, 5-H; $J_{5.6}$ 8.3 Hz), 8.38 and 8.61 (2 × 3 H, s, CMe₂), and 8.58 (9 H, s, Bu^t). 2',3'-O-Isopropylidene-2-N,5'-O-bis-(N-t-butoxycarbonylglycyl)isocytidine (8), also isolated from this aminoacylation (20%), had $R_{\rm F}$ ca. 0.6; $[\alpha]_{D}^{22} - 12.5^{\circ}$ (c 0.7) (Found: C, 52.1; H, 6.8; N, 11.45. C₂₈H₃₉N₅O₁₁ requires C, 52.25; H, 6.6; N, 11.7%); λ_{max} 210, 253, and 271sh nm (log ε 4.37, 4.56, and 4.46), λ_{min} 231 nm (log ε 4.19); ν_{max} 3 401, 2 976, 1748sh, 1 695br, 1 634, and 1 577br cm⁻¹; τ 2.38 (1 H, d, 6-H; $J_{6.5}$ 8.3 Hz), 4.05 (1 H, d, 5-H; $J_{5.6}$ 8.3 Hz), 8.37 and 8.62 (2 × 3 H, s, CMe₂), and 8.56 and 8.59 (2 × 9 H, s, 2 × Bu^t).

2',3'-O-Ethoxymethyleneisocytidine (9).—A solution of isocytidine (729 mg, 3 mmol) in anhydrous dioxan (20 ml) was treated with trichloroacetic acid (1.3 g) and triethyl orthoformate ²⁵ (1.5 ml) at 50 °C for 3 h, then cooled, neutralized [ion-exchange resin IR-4B (OH⁻) (100 ml) in dioxan], and evaporated to dryness. The residue was chromatographed on a silica gel (40 g) column in methylene chloride. Methylene chloride–methanol (10:1) eluted a foam (775 mg, 86%), $R_{\rm F}$ ca. 0.2 [t.1.c. in methylene chloride–methanol (10:1)]; [a]_D²² - 76.4° (c 1.36); dried at 60 °C and 10⁻⁵ mmHg (Found: C, 47.9; H, 5.95; N, 13.75. C₁₂-H₁₇N₃O₆ requires C, 48.15; H, 5.75; N, 14.05%); $\lambda_{\rm max}$. 209, 235sh, and 258sh nm (log ε 4.54, 4.15, and 3.87); $\nu_{\rm max}$. 3 448br, 3 289, 3 030, 1 656, and 1 629 cm⁻¹; τ (CD₃OD) 2.31

²³ V. Škarić, V. Turjak-Zebić, and Dj. Škarić, J.C.S. Perkin I, 1974, 1406.

²⁴ N. K. Kočetkov, E. I. Budovsky, and V. N. Šibaev, *Khim. Prirod. Soedinenii Akad. Nauk Uzbekh. S.S.R.*, 1965 (5), 328.

²⁵ F. Eckstein and F. Cramer, Chem. Ber., 1965, **98**, 995.

and 2.33 (1 H, d, 6-H; $J_{6.5}$ 8.0 Hz), 4.29 and 4.33 (1 H, d, 5-H; $J_{5.6}$ 8.0), 6.30 and 6.38 (2 H, q, CH₂O; $J_{\rm Et}$ 7 Hz), 8.77 and 8.88 (3 H, t, CH₃; $J_{\rm Et}$ 7 Hz).

2',3'-O-Ethoxymethylene-2-N-(N-t-butoxycarbonyl-L-

*phenylalanyl)*isocytidine (10).—To a solution of 2',3'-Oethoxymethyleneisocytidine (9) (450 mg, 1.5 mmol) in anhydrous dioxan (15 ml), N-t-butoxycarbonyl-L-phenylalanine (480 mg, 1.8 mmol) and dicyclohexylcarbodi-imide (925 mg, 4.5 mmol) were added. The mixture was kept at room temperature for 24 h, and the *product* was worked up as described above; yield 584 mg (71%); $[\alpha]_D^{20} - 36.2^\circ$ (c 0.7) (Found: C, 57.0; H, 6.5; N, 10.4. C₂₆H₃₄N₄O₉ requires C, 57.15; H, 6.25; N, 10.25%), λ_{max} 208, 256, and 276 nm (log ε 4.27, 4.28, and 4.22), λ_{min} 234 and 267 nm (log ε 3.87 and 4.20), ν_{max} 3 448, 3 135, 3 003, 1 701br, 1 664, 1 577br, and 701 cm⁻¹; τ (CD₃OD) 1.85 (1 H, d, 6-H; $J_{6.5}$ 8.0 Hz), 4.09 (1 H, d, 5-H; $J_{5.6}$ 8.0 Hz), 6.29 and 6.34 (2 H, q, CH₂O; J_{Et} 7.0 Hz), and 8.75 and 8.93 (3 H, t, CH₃; J_{Et} 7.0 Hz).

5'-O-Acetyl-2',3'-O-isopropylidene-2-N-(N-t-butoxycar-

bonyl-L-phenylalanyl)isocytidine (11).—The aminoacylisocytidine (5) (265 mg, 0.5 mmol) in anhydrous pyridine (5 ml) was acetylated with acetic anhydride (1 ml) at room temperature for 16 h and the product was worked up as for compound (2) to give a foam (240 mg, 84%), $R_{\rm F}$ ca. 0.7; $[{\bf g}]_{\rm D}^{21}$ —26.3° (c 1.9 in CH₂Cl₂) (Found: C, 58.95; H, 6.65; N, 9.75. C₂₈H₃₈N₄O₉ requires C, 58.75; H, 6.35; N, 9.8%); $\lambda_{\rm max}$ 207, 255, 274, and 291sh nm (log ε 4.28, 4.26, 4.21, and 3.99) $\lambda_{\rm min}$ 233 and 266 nm (log ε 3.92 and 4.19); $\nu_{\rm max}$ 3 413, 2 994, 1 745, 1 704, 1 639, 1 577, and 702 cm⁻¹; τ 2.36 (1 H, d, 6-H; $J_{6.5}$ 8.3 Hz), 2.84 (5 H, s, aromatic), 4.18 (1 H, d, 5-H; $J_{5.6}$ 8.3 Hz), 7.99 (3 H, s, OAc), 8.38 and 8.64 (2 × 3 H, s, CMe₂), and 8.64 (9 H, s, Bu^t).

2-N-(N-*t*-Butoxycarbonyl-L-phenylalanyl)isocytidine (12). —To a suspension of isocytidine (100 mg, 0.41 mmol) in anhydrous dioxan (5 ml), N-t-butoxycarbonyl-L-phenyl-Lphenylalanine (136 mg, 0.5 mmol) and NN'-dicyclohexylcarbodi-imide (152 mg, 0.74 mmol) in dioxan (5 ml) and water (1 ml) were added. The mixture was stirred for 24 h, then more NN'-dicyclohexylcarbodi-imide (106 mg, 0.8 mmol) was added. The product was worked up as described above to give a foam (48 mg, 25%); $[a]_{\rm D}^{24} - 22.7^{\circ}$ (c 0.6); dried at 80 °C and 10⁻⁵ mmHg (Found: C, 57.85; H, 6.3; N, 11.5. C₂₃H₃₀N₄O₈ requires C, 58.2; H, 6.35; N, 11.8%); $\lambda_{\rm max}$ 207, 257, and 273 nm (log ε 4.25, 4.27, and 4.20), $\lambda_{\rm min}$ 234 and 268 nm (log ε 3.91 and 4.20); $\nu_{\rm max}$ 3 509br, 3 030, 2 967, 1 695br, 1 639, 1 587br, and 702 cm⁻¹; τ (CD₃OD) 1.63 (1 H, d, 6-H; $J_{6.5}$ 8.3 Hz), 2.80 (5 H, s, aromatic), 4.09 (1 H, d, 5-H; $J_{5.6}$ 8.3 Hz), and 8.63 (9 H, s, Bu^t).

2',3'-O-Isopropylidene-2-N-(N-triphenylmethylglycyl-

glycyl)isocytidine (13).—To a solution of isocytidine (1) (70.7 mg, 0.25 mmol) in dimethylformamide (4 ml), the hydroxysuccinimido-ester of N-triphenylmethylglycylglycine ¹⁷ (237 mg, 0.5 mmol) was added. The mixture was heated at 95 °C for 4 h, then kept at room temperature for 24 h and evaporated to dryness. The residue was triturated with water. A solid separated which, washed with ether, yielded the *product* (13) (129 mg, 81%), m.p. 122—125 °C (from dichloromethane-n-hexane) (Found: C, 65.85; H, 6.2; N, 10.9. $C_{33}H_{37}N_5O_7$ requires C, 65.7; H, 5.85; N, 10.95%); λ_{max} . 257 and 270sh nm (log ε 3.55 and 3.48), λ_{min} . 241 nm (log ε 3.33), v_{max} . 3 413, 3 086, 2 915, 1 695, 1 631, 1 580br, and 708 cm⁻¹.

2-N-(N-Triphenylmethylglycylglycyl)isocytosine (14).-To

a solution of isocytosine (111 mg, 1 mmol) in dimethylformamide–dimethyl sulphoxide (8 ml; 1:1) the hydroxysuccinimido-ester of N-triphenylmethylglycylglycine ¹⁷ (471 mg, 1 mmol) in dimethylformamide (4 ml) was added. The *product* was worked up as for compound (13), purified on a silica gel plate (CH₂Cl₂–MeOH, 10:1), and crystallized from methanol; yield 380 mg (80%), m.p. 221–222 °C (from chloroform–n-hexane); dried at 80 °C and 10⁻⁵ mmHg (Found: C, 67.1; H, 5.5; N, 14.7. C₂₇H₂₅N₅O₃,-H₂O requires C, 66.8; H, 5.6; N, 14.45%), λ_{max} . 220sh and 268 nm (log ε 4.45 and 3.92), λ_{min} . 253 nm (log ε 3.66); ν_{max} . 3 436, 3 289, 3 115, 2 985, 1 685br, 1 621, 1 565, and 706 cm⁻¹.

2-N-Glycylglycylisocytosine (15).—A solution of 2-N-(N-triphenylmethylglycylglycyl)isocytosine (14) (121.5 mg, 0.25 mmol) in 50% acetic acid was heated at 95 °C for 10 min and then diluted with water (5 ml). The precipitate was filtered off and the filtrate evaporated to dryness to give the product (53 mg, 94%), m.p. 270—275 °C (decomp.) [from MeOH-H₂O (4:1)] (Found: C, 42.4; H, 5.0; N, 29.65. C₈H₁₁N₅O₅ requires C, 42.65; H, 4.9; N, 31.1%), ν_{max} . 3 125br, 1 667br, and 1603 cm⁻¹; τ (D₂O) 2.42 (1 H, d, 6-H; $J_{6.5}$ 7.0 Hz), 4.14 (1 H, d, 5-H; $J_{5.6}$ 7.0 Hz), and 6.0 (2 × 2 H, s, 2 × CH₂).

Acidic Hydrolysis of 2',3'-O-Isopropylidene-2-N-(N-tbutoxycarbonyl-L-phenylalanyl)isocytidine (5).-(a) The 2-N-Aminoacylisocytidine (5) (400 mg, 0.76 mmol) dissolved in 98% trifluoroacetic acid (3.5 ml) was kept at -12 °C for 5 min and then the solution was evaporated to dryness. 2',3'-O-Isopropylidene-2-N-L-phenylalanylisocytidine trifluoroacetate salt (16) separated on trituration with ether and methylene chloride (yield 265 mg, 65%); m.p. 173-175 °C (from methanol-ether); $[\alpha]_{D}^{22} - 48.6^{\circ}$ (c 0.78 in 50% EtOH) (Found: C, 50.8; H, 5.1; N, 10.6. $C_{21}H_{26}N_{4}O_{6}$ - $CF_{3}CO_{2}H$ requires C, 50.75; H, 5.0; N, 10.3%); $\lambda_{max.}$ 210, 259, 281. and 314sh nm (log & 4.49, 4.34, 4.36, and 3.85), $\lambda_{min.}$ 239 and 266 nm (log ϵ 4.11 and 4.31); $\nu_{max.}$ 3 521, 3 145br, 2 674, 1 695sh, 1 678, 1 634, 1 587br, and 706 cm⁻¹; τ (CD₃OD) 1.80 (1 H, d, 6-H: $J_{6.5}$ 8.3 Hz), 2.67 (5 H, s, aromatic), 4.00 (1 H, d, 5-H; J_{5.6} 8.3 Hz), and 8.46 and 8.71 (2 \times 3 H, s, CMe₂).

(b) The chromatographically homogeneous compound (5) (400 mg, 0.76 mmol) was treated with 98% trifluoroacetic acid (3.5 ml) at 23 °C for 5 min and then the mixture was evaporated to dryness. Preparative t.l.c. [development in methylene chloride-methanol (10:1)] separated (i) starting material (41 mg, 10.2%), R_F ca. 0.6; (ii) a foam identified as 2-N-L-phenylalanylisocytosine (17) (107 mg, 55.4%), $R_{\rm F}$ ca. 0.25 (Found: C, 60.40; H, 5.75; N, 21.7. $C_{13}H_{14}$ -N₄O₂ requires C, 60.45; H, 5.45; N, 21.3%; τ 2.42 (1 H, d, 6-H; $J_{6.5}$ 6.8 Hz), 2.78 (5 H, s, aromatic), and 4.30 (1 H, d, 5-H; $J_{5.6}$ 6.8 Hz); (iii) 2',3'-O-isopropylidene-5'-O-(Nt-butoxycarbonyl-L-phenylalanyl)isocytidine (18) (31 mg, 7.8%); $R_{\rm F}$ ca. 0.5; τ (CD₃OD) 2.39 (1 H, d, 6-H; $J_{6.5}$ 7.8 Hz), 2.75 (5 H, s, aromatic), 4.05 (1 H, d, 5-H; J_{5.6} 7.8 Hz), 8.41 and 8.64 $(2 \times 3 \text{ H}, \text{ s}, \text{CMe}_2)$, and 8.63 $(9 \text{ H}, \text{ s}, \text{Bu}^t)$; and (iv) a minor hygroscopic component, tentatively identified as 2',3'-O-isopropylidene-5'-O-L-phenylalanylisocytidine trifluoroacetate salt (19), τ (CD₃OD) 2.31 (1 H, d, 6-H; $J_{6.5}$ 7.8 Hz), 2.78 (5 H, s, aromatic), 4.22 (1 H, d, 5-H; $J_{5.6}$ 7.8 Hz), and 8.42 and 8.66 (2 × 3 H, s, CMe_2).

2',3'-O-Ethoxymethylene-5,6-dihydroisocytidine (20).—A solution of 2',3'-O-ethoxymethyleneisocytidine (9) (100 mg, 0.3 mmol) in methanol (15 ml) was hydrogenated over 5% rhodium-carbon (90 mg) at 55 lb in⁻² for 5 h. Work-up as

for 2',3'-O-isopropylidene-5,6-dihydrouridine ²² gave a foam in quantitative yield; $[\alpha]_{D}^{24}$ -11° (c 0.8) (Found: C, 45.2; H, 6.25; N, 13.05. C₁₂H₁₈N₃O₆,H₂O requires C, 45.15; H, 6.65; N, 13.15%), λ_{max} 207 and 239 nm (log ε 4.12 and 4.14), λ_{max} 222 nm (log ε 3.94); ν_{max} 3 448br, 2 976, 1 736, 1 645br, and 1 608 cm⁻¹; τ (CD₃OD) 6.33 and 6.38 (2 H, q, CH₂O; J_{Et} 7.0 Hz), 6.37 (2 H, t, 6-H₂; $J_{6.5}$ 6.7 Hz), 7.45 (2 H, t, 5-H₂; $J_{5.6}$ 6.7 Hz), and 8.76 and 8.82 (3 H, t, CH₃; J_{Et} 7.0 Hz).

2-N-(Glycylglycyl)-5,6-dihydroisocytosine (21).—A solution of 2-N-(glycylglycyl)isocytosine (40 mg, 0.178 mmol) in distilled water (2 ml) was hydrogenated over 5% rhodium-carbon (40 mg) at 50 lb in⁻² for 16 h as described above to give the product (21) (33.5 mg, 83%), m.p. 290—300 °C (decomp.) (from 80% methanol) (Found: C, 42.0: H, 5.85; N, 30.45. $C_8H_{13}N_5O_3$ requires C, 42.3; H, 5.75; N, 30.8%), v_{max} . 3 205, 3 030br, 2 865, and 1 686 cm⁻¹. 5,6-Dihydro-2',3'-O-isopropylidene-2-N-(N-t-butoxycar-

 $(100\%); [\alpha]_{\rm p}^{22} - 47.8^{\circ} (c \ 0.56) (Found: C, 51.7; H, 7.1; N, 12.45. C₁₉H₃₀N₄O₈ requires C, 51.55; H, 6.85; N,$

12.65%); $\lambda_{max.}$ 234sh and 259 nm (log ε 4.06 and 4.21), $\lambda_{max.}$ 207 nm (log ε 3.82); $\nu_{max.}$ 3 412br, 2 967, 2 907, 1 704br, and 1 582br cm⁻¹; τ 6.33 (2 H, t, 6-H₂; $J_{6.5}$ 6.7 Hz), 7.35 (2 H, t, 5-H₂; $J_{5.6}$ 6.7 Hz), 8.40 and 8.62 (2 \times 3 H, s, CMe₂), and 8.57 (9 H, s, Bu^t).

5,6-Dihydro-2',3'-O-isopropylidene-2-N-(N-t-butoxycarbonyl-L-β-cyclohexylalanyl)isocytidine (23).—Compound (5) (106 mg, 0.2 mmol), hydrogenated as described above, yielded the crystalline product (23) (99%), m.p. 161—163 °C (from methylene chloride-n-hexane); $[\alpha]_{p}^{22} - 50.7^{\circ}$ (c 0.88) (Found: C, 57.8; H, 7.8; N, 10.1. C₂₆H₄₂N₄O₈ requires C, 57.95; H, 7.85; N, 10.4%), λ_{max} 227 and 260 nm (log ε 4.03 and 4.25), λ_{min} 206 and 238 nm (log ε 3.82 and 3.98); ν_{max} 3 484, 3 448, 2 994, 2 941, 2 865, 1 718, 1 672, and 1 597br cm⁻¹; τ 6.30 (2 H, t, 6-H₂; $J_{6.5}$ Hz), 7.30 (2 H, t, 5-H₂; $J_{5.6}$ 6.5 Hz), 8.40 and 8.62 (2 × 3 H, s, CMe₂), 8.57 (9 H, s, Bu^t), and 8.05—9.0 (11 H, m, cyclohexyl).

We thank Mrs. E. Furić for technical assistance and Mrs. M. Tonković and Mrs. Lj. Babić for microanalyses.

[6/784 Received, 22nd April, 1976]