Aminoacyl and Dihydro-derivatives of Isocytidine and Isocytosine

By Vinko S̈karić,* Goran Laćan, and Djurdja Škarić, Laboratory of Stereochemistry and Natural Products, Institute Rugjer Bošković, 41001 Zagreb, Croatia, Yugoslavia

Abstract

Isocytosine and 2'.3'-O-protected isocytidines were coupled with appropriately protected L-phenylalanine. glycine. or glycylglycine yielding the corresponding $2-N$-aminoacyl-isocytosines and -isocytidines. The mode of hydrolysis of $2-N$-(N-t-butoxycarbonyl-L-phenylalanyl) isocytidine (5) with trifiuoroacetic acid. to give $2-N-L-$ phenylalanylisocytidine (16). 2- N -L-phenylalanylisocytosine (17). and minor amounts of unexpected 5'-O-phenylalanyl derivatives. (18) and (19). was shown to depend on the reaction conditions.

Catalytic hydrogenation of $2^{\prime} .3^{\prime}-\mathrm{O}$-ethoxymethyleneisocytidine (9), the $2-\mathrm{N}$-aminoacylisocytidines (5) and (7). and $2-N$-glycylglycylisocytosine (15) over 5% rhodium-carbon gave the corresponding 5.6 -dihydro-derivatives (20), (23), (22), and (21) in quantitative yields.

Isocytidine ${ }^{1}$ and isocytosine ${ }^{2}$ are of both biophysical and biochemical interest. The unusual crystals of isocytosine, containing two tautomers in an exact $1: 1$ ratio, ${ }^{3}$ show ready proton migration in the presence of water vapour, and transmit currents enormously greater than those usually associated with organic semiconductors. ${ }^{4}$ U.v. spectroscopic data ${ }^{5}$ and the X-ray
${ }^{1}$ D. H. Brown, Sir A. R. Todd, and S. Varadarajan, J. Chem. Soc., 1957, 868.
${ }^{2}$ M. M. Stimson and M. J. O'Donell, J. Amer. Chem. Soc., 1952, 74, 1805.
${ }^{3}$ B. D. Sharma and J. F. McConnell, Acta Cryst., 1965, 19, 797.
4 J. M. Thomas, J. R. N. Evans, and T. J. Lewis, Discuss. Faraday Soc., 1971, 51. 73.
crystal structure of 5,6-dihydroisocytidine monohydrate have revealed the molecule to exist as the aminotautomer state. ${ }^{6}$ The utilization of isocytidine by living cells as a pyrimidine source, ${ }^{7}$ the great quantities of aminoacyl and peptidyl components firmly bound to deoxyribonucleic acids in tumours, ${ }^{8}$ and the possible 'punctuation' role of such components in the genetic

5 V. Škarić, B. Gašpert, M. Hohnjec, and G. Laćan, J.C.S. Perkin I, 1974, 267.

6 B. Kojić-Prodić, Ž. Ružić-Toroš, and E. Coffou, Acta Cryst., 1976, B32, 1103.
J. Doskočil, A. Holý, and J. Filip, Nucleic Acid Res., 1974, 1, 1209.
${ }^{8}$ J. S. Salser and M. E. Balis, Cancer Res., 1968, 28, 595.
code ${ }^{9}$ (acting as 'derepressors' of structural genes ${ }^{10}$) directed our studies towards the synthesis of $2-N$ -aminoacyl-isocytidine and -isocytosine derivatives.

Acetylation of $2^{\prime}, 3^{\prime}-O$-isopropylidene isocytidine ${ }^{1,11}$ with 1 equiv. of acetic anhydride yielded the $2-N$ acetyl derivative (2) (73.2%) and only 30.7% of the 2 $N, 5^{\prime}$ - O-diacetyl derivative (3). The successful separation of the $2-N$-acetylisocytidine (2) encouraged us to attempt the preparation and separation of $2-N$-aminoacyl derivatives. Thus, $2-N$-(N-benzyloxycarbonyl-DL-phenylalanyl)- (4), 2-N-(N-t-butoxycarbonyl-L-phenylalanyl)- (5), and $2-N$-(N-t-butoxycarbonyl-glycyl)- (7) $2^{\prime}, 3^{\prime}-O$-isopropylideneisocytidines were

(12) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=$ Boc-L-Phe
$2^{\prime}, 3^{\prime}-O$-CHOEt derivatives
(9) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
(10) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=$ Boc-L-Phe
(20) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$; 5,6-dihydro
$2^{\prime}, 3^{\prime}-O-\mathrm{CMe}_{2}$ derivatives
(1) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
(2) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ac}$
(3) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ac}$
(4) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Z}$-DL-Phe
(5) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=$ Boc-L-Phe
(6) $\mathrm{R}^{1}=\mathrm{R}^{2}=$ Boc-L-Phe
(7) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=$ Boc-Gly
(8) $\mathrm{R}^{1}=\mathrm{R}^{2}=$ Boc-Gly
(11) $\mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{Boc}-\mathrm{L}-\mathrm{Phe}$
(13) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=(\mathrm{Gly})_{2} \mathrm{CPh}_{3}$
(16) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{L}-\mathrm{Phe}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$
(18) $\mathrm{R}^{1}=$ Boc-L-Phe, $\mathrm{R}^{2}=\mathrm{H}^{3}$
(19) $\mathrm{R}^{1}=\mathrm{L}-\mathrm{Phe}, \mathrm{CF}_{3} \mathrm{COOH}, \mathrm{R}^{2}=\mathrm{H}$
(22) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=$ Boc-Gly; 5,6-dihydro
(23) $\mathrm{R}^{\mathbf{1}}=\mathrm{H}, \mathrm{R}^{2}=$ Boc-HNCHCO; 5,6-dihydro $\mathrm{C}_{6} \mathrm{H}_{11}{ }^{\mathrm{C}} \mathrm{CH}_{2}$
$\mathrm{Z}=\mathrm{PhCH}_{2} \cdot \mathrm{O} \cdot \mathrm{CO}$
$\mathrm{Boc}=\mathrm{Bu}^{t} \mathrm{O} \cdot \mathrm{CO}$
easily separated ($63-67 \%$) from the reaction of the isocytidine (l) with appropriately protected DL-phenylalanine, L-phenylalanine, or glycine in the presence of dicyclohexylcarbodi-imide. ${ }^{12}$ The $2-N, 5^{\prime}-O$-bis-Lphenylalanyl (6) and diglycyl (8) derivatives were isolated

[^0]in $17-20 \%$ yield. The de- O-acetylation of these byproducts is exemplified by the hydrolysis with concentrated ammonia-dioxan (1:1) of the $2-N, 5^{\prime}-O$-bis(aminoacyl)isocytidine (6) to give the $2-N$-aminoacyl derivative (5). Acetylation of compound (5) yielded $5^{\prime}-O$-acetyl- $2^{\prime}, 3^{\prime}-O$-isopropylidene- $2-N$-(N-t-butoxycarb-onyl-L-phenylalanyl)isocytidine (11).

Aminoacylation of the hitherto unknown acid-labile $2^{\prime}, 3^{\prime}$-O-ethoxymethyleneisocytidine (9) conveniently afforded the corresponding $2-N-(N-\mathrm{t}$-butoxycarbonyl-Lphenylalanyl) derivative (10) in 71% yield. The n.m.r. spectra of the $2^{\prime}, 3^{\prime}$ - O-ethoxymethylene ribonucleosides (9) and (10) agree with those reported for the diastereoisomeric $2^{\prime}, 3^{\prime}$ - O-benzylidene nucleosides. ${ }^{13}$

In contrast to earlier investigations of cytidine, ${ }^{14}$ the coupling reactions of unprotected isocytidine, with $N N^{\prime}-$ dicyclohexylcarbodi-imide as condensing agent, afforded numerous side products and only a 17% yield of $2-N$ (N-t-butoxycarbonyl-L-phenylalanyl)isocytidine (12). $2^{\prime}, 3^{\prime}$-O-Isopropylidene- $2-N$-(N-triphenylmethylglycylglycyl)isocytidine (13) was also obtained, in poor yield, when the hydroxysuccinimido-ester of N-triphenylmethylglycylglycine ${ }^{15-17}$ was coupled with $2^{\prime}, 3^{\prime}-O-$ isopropylideneisocytidine. However, isocytosine was converted into $2-N$-(N-triphenylmethylglycylglycyl)isocytosine (14) in 80% yield. Detritylation of compound (14) with 50% acetic acid gave $2-N$-glycylglycylisocytosine (15).

Treatment of compound (5) with 98% trifluoroacetic acid at $-12{ }^{\circ} \mathrm{C}$ for 5 min afforded crystalline $2^{\prime}, 3^{\prime}-\mathrm{O}$ -isopropylidene-2- N-L-phenylalanylisocytidine trifluoroacetate salt (16). $N \rightarrow O$-Acyl migration brought about by strong acids has been widely investigated. ${ }^{18-20}$ In our experience hydrolysis of compound (5) with 98% trifluoroacetic acid at $23^{\circ} \mathrm{C}$ for 5 min led to cleavage of the N-glycosyl bond and isolation of $2-N$-L-phenylalanylisocytosine (17). The formation of minor amounts of $\quad 5^{\prime}-O-\left(N\right.$-t-butoxycarbonyl-L-phenylalanyl)- $2^{\prime}, 3^{\prime}-O-$ isopropylideneisocytidine (18) and $5^{\prime}-O-$ - - phenylalanyl$2^{\prime}, 3^{\prime}-O$-isopropylideneisocytidinetrifluoroacetate salt (19) can be explained in terms of $2-N \longrightarrow 5^{\prime}$ - O-aminoacyl migration. The marked influence of the $5^{\prime}-O$-acyl group on the chemical shift of the $\mathrm{C}-6$ proton was of diagnostic value in the identification of aminoacylated products.

In continuation of our studies on the chemistry of
${ }^{15}$ L. Zervas and D. M. Theodoropoulos, J. Amer. Chem. Soc. 1956, 78, 1359.
${ }^{16}$ G. W. Anderson, J. E. Zimmerman, and F. M. Callahan, J. Amer. Chem. Soc., 1964, 86, 1839.
${ }_{17}$ V. Škarić, B. Katušin-Ražem, B. Šimunić, and Dj. Škarić, Croat. Chem. Acta, 1975, 47, 603.
${ }_{18}$ L. Josefsson and P. Edman, Biochim. Biophys. Acta, 1957, 25, 614.
${ }^{19}$ G. D. Fasman, Science, 1960, 131, 420.
${ }^{20}$ T. Wakamiya, Y. Tarumi, and T. Shiba, Bull. Chem. Soc. (Japan), 1974. 47, 2686, and references cited therein.
aminopyrimidine nucleosides ${ }^{5,21}$ we have found that hydrogenation of $2^{\prime}, 3^{\prime}-O$-ethoxymethyleneisocytidine (9), $2-N$-glycylglycylisocytosine (15), and the $2-N$-glycylisocytidine (8) over 5% rhodium-carbon ${ }^{22}$ affords the 5,6 -dihydro-derivatives in quantitative yields. Hydrogenation of the $2-N$-phenylalanylisocytidine (5) gave $2^{\prime}, 3^{\prime}$ - O-isopropylidene- $2-N$-(N-t-butoxycarbonyl-L- β -cyclohexylalanyl)-5,6-dihydroisocytidine (23).

EXPERIMENTAL

The same techniques and apparatus were used as previously described. ${ }^{23}$ In addition optical rotations were measured for solutions in anhydrous ethanol ($l \mathrm{l} \mathrm{dm}$) with a Zeiss-Winkel 179707 apparatus.

Acetylation of $2^{\prime}, 3^{\prime}$-O-Isopropylideneisocytidine ${ }^{1}$ (1).—A solution of isocytidine (1) ($142 \mathrm{mg}, 0.5 \mathrm{mmol}$) in anhydrous pyridine (3 ml) and acetic anhydride ($0.05 \mathrm{ml}, 0.5 \mathrm{mmol}$) was kept at room temperature for 48 h and then evaporated to dryness. Preparative t.l.c. [three developments in methylene chloride-methanol ($20: 1$); eluant acetone] separated starting material ($40 \mathrm{mg} ; R_{\mathrm{F}} c a .0 .1$); a foam identified as 2 - N -acetyl- $2^{\prime}, 3^{\prime}-\mathrm{O}$-isopropylideneisocytidine (2) $(86 \mathrm{mg}$, 73.2% based on transformed isocytidine), m.p. $146-147^{\circ} \mathrm{C}$ (from dichloromethane-ether) (lit., ${ }^{24} 145-148{ }^{\circ} \mathrm{C}$); $R_{\mathrm{F}} c a$. 0.5 ; $[\alpha]_{\mathrm{D}}{ }^{20}-47.5^{\circ}$ (c 0.54); dried at $80^{\circ} \mathrm{C}$ and $10^{-5} \mathrm{mmHg}$ (Found: C, 51.4; H, 6.1; $N, 12.7$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, $51.7 ; \mathrm{H}, 5.9 ; \mathrm{N}, 12.9 \%$) ; $\lambda_{\text {max. }} 209,255$, and 275 sh nm ($\log \varepsilon 4.07,4.19$, and 4.04), $\lambda_{\text {min. }} 232 \mathrm{~nm}(\log \varepsilon 3.81)$; $v_{\text {max. }}$ $3571 \mathrm{br}, 3040,1698,1642$, and $1587 \mathrm{br} \mathrm{cm}^{-1}$; $\tau\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ $1.91\left(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H} ; J_{6.5} 8.2 \mathrm{~Hz}\right), 4.10\left(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H} ; J_{5.6}\right.$ $8.2 \mathrm{~Hz}), 7.86(3 \mathrm{H}, \mathrm{s}, \mathrm{NAc}), 8.45$ and $8.65(2 \times 3 \mathrm{H}, \mathrm{s}$, CMe_{2}) ; and the foamy $2-N, 5^{\prime}$-O-diacetyl derivative (3) (30 $\mathrm{mg}, 30.7 \%$), $R_{\mathrm{F}} c a .0 .7$, which was also obtained (169 mg , 92%) from isocytidine (1) ($142 \mathrm{mg}, 0.5 \mathrm{mmol}$) with 2 equiv. of acetic anhydride ($0.1 \mathrm{ml}, 1.0 \mathrm{mmol}$); $[\alpha]_{\mathrm{D}}{ }^{24}-4.9^{\circ}(c 0.8)$ (Found: C, 52.3; H, 6.05; N, 11.7. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires C, $52.3 ; \mathrm{H}, 5.75 ; \mathrm{N}, 11.45 \%$) ; $\lambda_{\text {max. }} 212,254$, and 273 sh $\mathrm{nm}\left(\log \varepsilon 4.04,4.25\right.$, and 4.13), $\lambda_{\min .} 232 \mathrm{~nm}(\log \varepsilon 3.81)$; $\nu_{\max } 3096,3003,1730,1689,1631$, and $1575 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CD}_{3} \mathrm{CD}\right) 2.17\left(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H} ; J_{6.5} 8.2 \mathrm{~Hz}\right), 4.07(1 \mathrm{H}, \mathrm{d}, 5-$ $\left.\mathrm{H} ; J_{5.6} 8.2 \mathrm{~Hz}\right), 7.83(3 \mathrm{H}, \mathrm{s}, \mathrm{NAc}), 7.97(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, and 8.44 and $8.66\left(2 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right)$.

2-N-Aminoacylation of Isocytidines.-General procedure. Isocytidine, its $2^{\prime}, 3^{\prime}-O$-isopropylidene derivative, ${ }^{1}$ or its $2^{\prime}, 3^{\prime}-O$-ethoxymethylene derivative (1 mmol) in pyridine $(2 \mathrm{ml})$ was treated at room temperature for 48 h with the N -benzyloxycarbonyl or N -t-butoxycarbonyl derivative of phenylalanine or glycine (1.2 mmol) in the presence of a solution in dioxan (5 ml) of $N N^{\prime}$-dicyclohexylcarbodi-imide $(1.3 \mathrm{mmol})$. The precipitate was filtered off and washed with methanol, and the filtrate evaporated to dryness. Preparative t.l.c. (silica gel) [four developments in methylene chloride-methanol ($10: 1$); eluant methanol] separated starting material (ca. 20\%) and foamy products ($R_{F} c a$. $0.4-0.5)$.

2-N-(N-Benzyloxycarbonyl-DL-phenylalanyl)-2', 3^{\prime}-O-Iso-

 propylideneisocytidine (4) (65\%) showed $[\alpha]_{\mathrm{D}}{ }^{22}-8.9^{\circ}$ (c 0.9 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: $\mathrm{C}, 61.5$; $\mathrm{H}, 5.8 ; \mathrm{N}, 9.7 . \mathrm{C}_{29}-$ $\mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{8}$ requires $\mathrm{C}, 61.7 ; \mathrm{H}, 5.7 ; \mathrm{N}, 9.9 \%$) ; $\lambda_{\text {max. }} 206,255$, and $287.5 \mathrm{~nm}(\log \varepsilon 4.41,4.22$, and 4.18$)$, $\lambda_{\text {min. }} 234$ and 265${ }^{21}$ V. Škarić and J. Matulić, Croat. Chem. Acta, 1975, 47, 159.
${ }_{22}$ V. Škarić, B. Gašpert, and M. Hohnjec, J. Chem. Soc. (C), 1970, 2444
$\mathrm{nm}\left(\log \varepsilon 3.99\right.$ and 4.13) ; $\nu_{\text {max. }} 3460,3344,2933,1692 \mathrm{br}$, $1626,1570 \mathrm{br}$, and $698 \mathrm{~cm}^{-1}$.
$2^{\prime}, 3^{\prime}$-O-Isopropylidene-2-N-(N-t-butoxycarbonyl-L-phenylalanyl)isocytidine (5). (a) This product (67%) had m.p. $150-152{ }^{\circ} \mathrm{C}$ (from acetone-n-hexane); R_{F} ca. 0.5 ; $[\alpha]_{\mathrm{D}}{ }^{18}-38.2^{\circ}(c)$) (Found: C, 59.05, H, 6.75; N, 10.4. $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{8}$ requires C, 58.85 ; $\mathrm{H}, 6.45$; $\mathrm{N}, 10.55 \%$); $\lambda_{\text {max }}$ $204,254.5$, and $276 \mathrm{~nm}(\log \varepsilon 4.30,4.26$, and 4.20$), \lambda_{\text {min. }} 232$ and $265 \mathrm{~nm}\left(\log \varepsilon 3.94\right.$ and 4.17); $\nu_{\text {max. }} 3521,3436,3145$, $3021,1715,1681,1631 \mathrm{br}, 1580 \mathrm{br}$, and $701 \mathrm{~cm}^{-1}$; $\tau 1.99$ $\left(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H} ; J_{6.5} 8.3 \mathrm{~Hz}\right), 2.80(5 \mathrm{H}, \mathrm{s}$, aromatic), $4.12(1 \mathrm{H}$, $\left.\mathrm{d}, 5-\mathrm{H} ; J_{5.6} 8.3 \mathrm{~Hz}\right), 8.37$ and $8.63\left(2 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right)$, and $8.64\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$. $2^{\prime}, 3^{\prime}$-O-Isopropylidene-2-N, 5^{\prime}-O-bis-(N-t-butoxycarbonyl-L-phenylalanyl)isocytidine (6) (17\%), also obtained from this aminoacylation, showed $R_{F} c a$ 0.7 ; $[\alpha]_{\mathrm{D}}{ }^{18}-13.9^{\circ}$ (c 1) (Found: C, 61.95; H, 6.85; N, 9.05. $\quad \mathrm{C}_{40} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{O}_{11}$ requires $\mathrm{C}, 61.75 ; \mathrm{H}, 6.6 ; \mathrm{N}, 9.0 \%$); $\lambda_{\text {max. }} 206.5,255.5$, and $274 \mathrm{~nm}(\log \varepsilon 4.67,4.54$, and 4.50$)$, $\lambda_{\text {min. }}^{\text {max. }} 234$ and $266 \mathrm{~nm} .\left(\log \varepsilon 4.14\right.$ and 4.46); $\nu_{\text {max. }} 3401$, 2985, $1754 \mathrm{sh}, 1704,1639,1580$, and $699 \mathrm{~cm}^{-1}$; $\tau 2.38$ ($1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H} ; J_{6.5} 8.3 \mathrm{~Hz}$), $2.75-2.81(5 \mathrm{H}, \mathrm{m}$, aromatic), $4.08\left(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H} ; J_{5.6} 8.3 \mathrm{~Hz}\right), 8.41$ and $8.67(2 \times 3 \mathrm{H}, \mathrm{s}$, CMe_{2}), and ca. 8.60br ($\left.2 \times 9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}\right)$.
(b) Treatment of the bisaminoacylisocytidine (6) with concentrated ammonia-dioxan ($1: 1$) at room temperature for 4 h gave a crystalline product (73%), m.p. $150-152^{\circ} \mathrm{C}$, identical (mixed m.p. and i.r. spectrum) with the product from (a).
$2^{\prime}, 3^{\prime}$-O-Isopropylidene-2-N-($\mathrm{N}-\mathrm{t}$-butoxycarbonylglycyl) isocytidine (7). This product (63%) exhibited $[\alpha]_{D}{ }^{22}-22.6^{\circ}$ (c 0.7) (Found: C, 51.95 ; H, 6.65 ; N, 12.7. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{8}$ requires $\mathrm{C}, 51.8 ; \mathrm{H}, 6.4 ; \mathrm{N}, 12.7 \%$) ; $\lambda_{\text {max. }} 214,256$, and $273 \mathrm{sh} \mathrm{nm}\left(\log \varepsilon 3.94,4.17\right.$, and 4.07), $\lambda_{\text {min }} 235 \mathrm{~nm}(\log \varepsilon$ 3.73); $\nu_{\text {max. }} 340 \mathrm{lbr}, 3125,2985,1698 \mathrm{br}, 1634$, and 1577 $\mathrm{cm}^{-1} ; \tau 2.04\left(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H} ; J_{6.5} 8.3 \mathrm{~Hz}\right), 4.18(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H}$; $\left.J_{5.6} 8.3 \mathrm{~Hz}\right), 8.38$ and $8.61\left(2 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right)$, and 8.58 $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$. $2^{\prime}, 3^{\prime}$-O-Isopropylidene-2- $\mathrm{N}, 5^{\prime}$ - O -bis-($\mathrm{N}-\mathrm{t}$ butoxycarbonylglycyl) isocytidine (8), also isolated from this aminoacylation (20%), had $R_{\mathrm{F}} c a$. 0.6 ; $[\alpha]_{\mathrm{D}}{ }^{22}-12.5^{\circ}$ (c 0.7) (Found: C, 52.1; H, 6.8; N, 11.45. $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{11}$ requires $\mathrm{C}, 52.25 ; \mathrm{H}, 6.6 ; \mathrm{N}, 11.7 \%$); $\lambda_{\text {max. }} 210,253$, and $271 \mathrm{sh} \mathrm{nm}\left(\log \varepsilon 4.37,4.56\right.$, and 4.46), $\lambda_{\text {min }} 231 \mathrm{~nm}(\log \varepsilon$ 4.19) ; $\nu_{\max } 3401,2976,1748 \mathrm{sh}, 1695 \mathrm{br}, 1634$, and 1577 br $\mathrm{cm}^{-1} ; \tau 2.38\left(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H} ; J_{6.5} 8.3 \mathrm{~Hz}\right), 4.05(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H}$; $\left.J_{5.6} 8.3 \mathrm{~Hz}\right), 8.37$ and $8.62\left(2 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right)$, and 8.56 and $8.59\left(2 \times 9 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Bu}^{\mathrm{t}}\right)$.
$2^{\prime}, 3^{\prime}$-O-Ethoxymethyleneisocytidine (9).-A solution of isocytidine ($729 \mathrm{mg}, 3 \mathrm{mmol}$) in anhydrous dioxan (20 ml) was treated with trichloroacetic acid (1.3 g) and triethyl orthoformate ${ }^{25}(1.5 \mathrm{ml})$ at $50{ }^{\circ} \mathrm{C}$ for 3 h , then cooled, neutralized [ion-exchange resin IR-4B (OH^{-}) (100 ml) in dioxan], and evaporated to dryness. The residue was chromatographed on a silica gel (40 g) column in methylene chloride. Methylene chloride-methanol (10:1) eluted a foam ($\mathbf{7 7 5} \mathrm{mg}, \mathbf{8 6 \%}$), R_{F} ca. 0.2 [t.l.c. in methylene chloridemethanol (10:1)]; $[\alpha]_{\mathrm{D}}{ }^{22}-76.4^{\circ}(c 1.36)$; dried at $60^{\circ} \mathrm{C}$ and $10^{-5} \mathrm{mmHg}$ (Found: C, 47.9; H, 5.95; N, 13.75. $\mathrm{C}_{12}{ }^{-}$ $\mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, $48.15 ; \mathrm{H}, 5.75 ; \mathrm{N}, 14.05 \%$); $\lambda_{\text {max. }} 209$, 235 sh , and $258 \mathrm{sh} \mathrm{nm}\left(\log \varepsilon 4.54,4.15\right.$, and 3.87); $\nu_{\text {max }}$ $3448 \mathrm{br}, 3289,3030,1656$, and $1629 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CD}_{3} \mathrm{OD}\right) 2.31$
${ }^{23}$ V. Škarić, V. Turjak-Zebić, and Dj. Škarić, J.C.S. Perkin I, 1974, 1406.
${ }^{24}$ N. K. Kočetkov, E. I. Budovsky, and V. N. Sibaev, Khim. Prirod. Soedinenii Akad. Nauk Uzbekh. S.S.R., 1965 (5), 328.
${ }^{25}$ F. Eckstein and F. Cramer, Chem. Ber., 1965, 98, 995.
and $2.33\left(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H} ; J_{6.5} 8.0 \mathrm{~Hz}\right), 4.29$ and $4.33(1 \mathrm{H}, \mathrm{d}$, $\left.5-\mathrm{H} ; J_{5.6} 8.0\right), 6.30$ and $6.38\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{O} ; J_{\mathrm{Et}} 7 \mathrm{~Hz}\right)$, 8.77 and $8.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3} ; J_{\mathrm{Et}} 7 \mathrm{~Hz}\right)$.
$2^{\prime}, 3^{\prime}$-O-Ethoxymethylene-2-N-($\mathrm{N}-t$-butoxycarbonyl- L -
phenylalanyl)isocytidine (10).-To a solution of $2^{\prime}, 3^{\prime}-O-$ ethoxymethyleneisocytidine (9) ($450 \mathrm{mg}, 1.5 \mathrm{mmol}$) in anhydrous dioxan (15 ml), N -t-butoxycarbonyl-L-phenylalanine ($480 \mathrm{mg}, 1.8 \mathrm{mmol}$) and dicyclohexylcarbodi-imide $(925 \mathrm{mg}, 4.5 \mathrm{mmol})$ were added. The mixture was kept at room temperature for 24 h , and the product was worked up as described above; yield $584 \mathrm{mg}(71 \%)$; $[\alpha]_{\mathrm{D}}{ }^{20}-36.2^{\circ}$ (c 0.7) (Found: C, 57.0; H, 6.5; N, 10.4. $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{9}$ requires $\mathrm{C}, 57.15 ; \mathrm{H}, 6.25 ; \mathrm{N}, 10.25 \%$), $\lambda_{\text {max. }} 208,256$, and $276 \mathrm{~nm}\left(\log \varepsilon 4.27,4.28\right.$, and 4.22), $\lambda_{\text {min. }} 234$ and 267 nm $(\log \varepsilon 3.87$ and 4.20$)$, $\nu_{\text {max. }} 3448,3135,3003,1701 \mathrm{br}$, $1664,1577 \mathrm{br}$, and $701 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CD}_{3} \mathrm{OD}\right) 1.85(1 \mathrm{H}, \mathrm{d}, 6-$ $\left.\mathrm{H} ; J_{6.5} 8.0 \mathrm{~Hz}\right), 4.09\left(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H} ; J_{5.6} 8.0 \mathrm{~Hz}\right), 6.29$ and $6.34\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{O}\right.$; $\left.J_{\mathrm{Et}} 7.0 \mathrm{~Hz}\right)$, and 8.75 and $8.93(3 \mathrm{H}, \mathrm{t}$, $\mathrm{CH}_{3} ; J_{\mathrm{Et}} 7.0 \mathrm{~Hz}$).

5'-O-A cetyl-2', 3^{\prime}-O-isopropylidene-2-N-(N-t-butoxycar-bonyl-L-phenylalanyl)isocytidine (11).-The aminoacylisocytidine (5) ($265 \mathrm{mg}, 0.5 \mathrm{mmol}$) in anhydrous pyridine (5 ml) was acetylated with acetic anhydride (1 ml) at room temperature for 16 h and the product was worked up as for compound (2) to give a foam ($240 \mathrm{mg}, \mathbf{8 4} \%$), R_{F} ca. 0.7 ; $[\alpha]_{\mathrm{D}}{ }^{21}-26.3^{\circ}\left(c 1.9\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, 58.95; H, 6.65; $\mathrm{N}, 9.75 . \mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{9}$ requires C, $58.75 ; \mathrm{H}, 6.35 ; \mathrm{N}, 9.8 \%$); $\lambda_{\text {max. }} 207,255,274$, and $291 \mathrm{sh} \mathrm{nm}(\log \varepsilon 4.28,4.26,4.21$, and $3.99) \lambda_{\text {min. }} 233$ and $266 \mathrm{~nm}\left(\log \varepsilon 3.92\right.$ and 4.19); $\nu_{\text {max. }} 3413$, $2994,1745,1704,1639,1577$, and $702 \mathrm{~cm}^{-1} ; \tau 2.36$ ($1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H} ; J_{6.5} 8.3 \mathrm{~Hz}$), $2.84(5 \mathrm{H}, \mathrm{s}$, aromatic), 4.18 $\left(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H} ; J_{5.6} 8.3 \mathrm{~Hz}\right), 7.99(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 8.38$ and 8.64 $\left(2 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right)$, and $8.64\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$.
$2-\mathrm{N}-(\mathrm{N}-t$-Butoxycarbonyl-L-phenylalanyl) isocytidine (12). -To a suspension of isocytidine ($100 \mathrm{mg}, 0.41 \mathrm{mmol}$) in anhydrous dioxan (5 ml), N-t-butoxycarbonyl-L-phenyl-Lphenylalanine ($136 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $N N^{\prime}$-dicyclohexyl-carbodi-imide ($152 \mathrm{mg}, 0.74 \mathrm{mmol}$) in dioxan (5 ml) and water (1 ml) were added. The mixture was stirred for 24 h , then more $N N^{\prime}$-dicyclohexylcarbodi-imide ($106 \mathrm{mg}, 0.8$ mmol) was added. The product was worked up as described above to give a foam ($48 \mathrm{mg}, \mathbf{2 5} \%$); $[\alpha]_{\mathrm{D}}{ }^{24}-22.7^{\circ}(c 0.6)$; dried at $80{ }^{\circ} \mathrm{C}$ and $10^{-5} \mathrm{mmHg}$ (Found: $\mathrm{C}, 57.85 ; \mathrm{H}$, 6.3 ; $\mathrm{N}, 11.5 . \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{8}$ requires $\mathrm{C}, 58.2 ; \mathrm{H}, 6.35 ; \mathrm{N}$, $11.8 \%)$; $\lambda_{\text {max. }} 207,257$, and $273 \mathrm{~nm}(\log \varepsilon 4.25,4.27$, and $4.20), \lambda_{\text {min. }} 234$ and $268 \mathrm{~nm}(\log \varepsilon 3.91$ and 4.20$)$; $\nu_{\text {max }}$ $3509 \mathrm{br}, 3030,2967$, $1695 \mathrm{br}, 1639,1587 \mathrm{br}$, and $702 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CD}_{3} \mathrm{OD}\right) 1.63\left(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H} ; J_{6.5} 8.3 \mathrm{~Hz}\right), 2.80(5 \mathrm{H}, \mathrm{s}$, aromatic), $4.09\left(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H}\right.$; $\left.J_{5.6} 8.3 \mathrm{~Hz}\right)$, and $8.63(9 \mathrm{H}, \mathrm{s}$, Bu^{t}).
$2^{\prime}, 3^{\prime}$-O-Isopropylidene-2-N-(N-triphenylmethylglycyl-
glycyl)isocytidine (13).-To a solution of isocytidine (1) $(70.7 \mathrm{mg}, 0.25 \mathrm{mmol})$ in dimethylformamide (4 ml), the hydroxysuccinimido-ester of N-triphenylmethylglycylglycine ${ }^{17}$ ($237 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added. The mixture was heated at $95{ }^{\circ} \mathrm{C}$ for 4 h , then kept at room temperature for 24 h and evaporated to dryness. The residue was triturated with water. A solid separated which, washed with ether, yielded the product (13) ($129 \mathrm{mg}, 81 \%$), m.p. $122-125{ }^{\circ} \mathrm{C}$ (from dichloromethane-n-hexane) (Found: C, 65.85; H, $6.2 ; \mathrm{N}, 10.9$. $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{7}$ requires $\mathrm{C}, 65.7 ; \mathrm{H}, 5.85 ; \mathrm{N}$, $10.95 \%)$; $\lambda_{\text {max }} 257$ and 270 sh $\mathrm{nm}(\log \varepsilon 3.55$ and 3.48), $\lambda_{\min .} 241 \mathrm{~nm}(\log \varepsilon 3.33)$, $v_{\max .} 3413,3086,2915,1695$, $1631,1580 \mathrm{br}$, and $708 \mathrm{~cm}^{-1}$.

2-N-(N-Triphenylmethylglycylglycyl)isocytosine (14).-To
a solution of isocytosine ($111 \mathrm{mg}, 1 \mathrm{mmol}$) in dimethyl-formamide-dimethyl sulphoxide ($8 \mathrm{ml} ; 1: 1$) the hydroxy-succinimido-ester of N-triphenylmethylglycylglycine ${ }^{17}$ (471 $\mathrm{mg}, 1 \mathrm{mmol}$) in dimethylformamide (4 ml) was added. The product was worked up as for compound (13), purified on a silica gel plate $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 10: 1\right)$, and crystallized from methanol; yield $380 \mathrm{mg}(80 \%)$, m.p. $221-222{ }^{\circ} \mathrm{C}$ (from chloroform-n-hexane); dried at $80{ }^{\circ} \mathrm{C}$ and 10^{-5} mmHg (Found: $\mathrm{C}, 67.1 ; \mathrm{H}, 5.5$; $\mathrm{N}, 14.7 . \quad \mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3},-$ $\mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 66.8 ; \mathrm{H}, 5.6 ; \mathrm{N}, 14.45 \%$), $\lambda_{\text {max. }} 220$ sh and $268 \mathrm{~nm}\left(\log \varepsilon 4.45\right.$ and 3.92), $\lambda_{\text {min. }} 253 \mathrm{~nm}(\log \varepsilon 3.66)$; $\nu_{\text {max. }}$ $3436,3289,3115,2985,1685 \mathrm{br}, 1621,1565$, and 706 cm^{-1}.

2-N-Glycylglycylisocytosine (15).-A solution of $2-N-(N-$ triphenylmethylglycylglycyl)isocytosine (14) $(121.5 \mathrm{mg}$, 0.25 mmol) in 50% acetic acid was heated at $95{ }^{\circ} \mathrm{C}$ for 10 \min and then diluted with water (5 ml). The precipitate was filtered off and the filtrate evaporated to dryness to give the product ($53 \mathrm{mg}, 94 \%$), m.p. $270-275{ }^{\circ} \mathrm{C}$ (decomp.) [from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(4: 1)$] (Found: C, 42.4; H, 5.0; N, $29.65 . \quad \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires $\mathrm{C}, 42.65 ; \mathrm{H}, 4.9$; $\mathrm{N}, 31.1 \%$), $\nu_{\text {max. }} 3125 \mathrm{br}, 1667 \mathrm{br}$, and $1603 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{D}_{2} \mathrm{O}\right) 2.42(1 \mathrm{H}, \mathrm{d}$, $\left.6-\mathrm{H} ; J_{6.5} 7.0 \mathrm{~Hz}\right), 4.14\left(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H} ; J_{5.6} 7.0 \mathrm{~Hz}\right)$, and 6.0 $\left(2 \times 2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{2}\right.$).

Acidic Hydrolysis of $2^{\prime}, 3^{\prime}$-O-Isopropylidene-2-N-(N-t-butoxycarbonyl-L-phenylalanyl) isocytidine (5).-(a) The 2-NAminoacylisocytidine (5) ($400 \mathrm{mg}, 0.76 \mathrm{mmol}$) dissolved in 98% trifluoroacetic acid (3.5 ml) was kept at $-12{ }^{\circ} \mathrm{C}$ for 5 \min and then the solution was evaporated to dryness. $2^{\prime}, 3^{\prime}$-O-Isopropylidene-2-N-L-phenylalanylisocytidine trifluoroacetate salt (16) separated on trituration with ether and methylene chloride (yield $265 \mathrm{mg}, 65 \%$); m.p. $173-$ $175{ }^{\circ} \mathrm{C}$ (from methanol-ether); $[\alpha]_{\mathrm{D}}{ }^{22}-48.6^{\circ}$ (c 0.78 in 50% EtOH) (Found: C, 50.8; H, 5.1; N, 10.6. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6}$,$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ requires $\left.\mathrm{C}, 50.75 ; \mathrm{H}, 5.0 ; \mathrm{N}, 10.3 \%\right) ; \lambda_{\text {max. }} 210$, 259,281 . and $314 \mathrm{sh} \mathrm{nm}(\log \varepsilon 4.49,4.34,4.36$, and 3.85), $\lambda_{\text {min. }} 239$ and $266 \mathrm{~nm}(\log \varepsilon 4.11$ and 4.31$)$; $\nu_{\text {max. }} 3521$, $3145 \mathrm{br}, 2674,1695 \mathrm{sh}, 1678,1634,1587 \mathrm{br}$. and 706 cm^{-1}; $\tau\left(\mathrm{CD}_{3} \mathrm{OD}\right) 1.80\left(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H}: J_{6.5} 8.3 \mathrm{~Hz}\right), 2.67\left(5 \mathrm{H}_{4}\right.$ s , aromatic), $4.00\left(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H} ; J_{5.6} 8.3 \mathrm{~Hz}\right)$, and 8.46 and $8.71\left(2 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right)$.
(b) The chromatographically homogeneous compound (5) ($400 \mathrm{mg}, 0.76 \mathrm{mmol}$) was treated with 98% trifluoroacetic acid $(3.5 \mathrm{ml})$ at $23^{\circ} \mathrm{C}$ for 5 min and then the mixture was evaporated to dryness. Preparative t.l.c. [development in methylene chloride-methanol ($10: 1$)] separated (i) starting material ($41 \mathrm{mg}, 10.2 \%$), R_{F} ca. 0.6 ; (ii) a foam identified as $2-\mathrm{N}$-L-phenylalanylisocytosine (17) ($107 \mathrm{mg}, 55.4 \%$), $R_{\mathrm{F}} c a .0 .25$ (Found: C, $60.40 ; \mathrm{H}, 5.75$; $\mathrm{N}, 21.7 . \mathrm{C}_{13} \mathrm{H}_{14}{ }^{-}$ $\mathrm{N}_{4} \mathrm{O}_{2}$ requires C, $\left.60.45 ; \mathrm{H}, 5.45 ; \mathrm{N}, 21.3 \%\right) ; \tau 2.42(1 \mathrm{H}$, $\left.\mathrm{d}, 6-\mathrm{H} ; J_{6.5} 6.8 \mathrm{~Hz}\right), 2.78(5 \mathrm{H}, \mathrm{s}$, aromatic), and $4.30(1 \mathrm{H}$, d, $5-\mathrm{H} ; J_{5.6} 6.8 \mathrm{~Hz}$); (iii) $2^{\prime}, 3^{\prime}$-O-isopropylidene-5'-O-(N-t-butoxycarbonyl-L-phenylalanyl) isocytidine (18) $(31 \mathrm{mg}$, $7.8 \%) ; R_{\mathrm{F}} c a .0 .5 ; \tau\left(\mathrm{CD}_{3} \mathrm{OD}\right) 2.39\left(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H} ; J_{6.5} 7.8\right.$ $\mathrm{Hz}), 2.75\left(5 \mathrm{H}, \mathrm{s}\right.$, aromatic), $4.05\left(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H} ; J_{5.6} 7.8 \mathrm{~Hz}\right)$, 8.41 and $8.64\left(2 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right)$, and $8.63\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$; and (iv) a minor hygroscopic component, tentatively identified as $2^{\prime}, 3^{\prime}-O$-isopropylidene- $5^{\prime}-O$-L-phenylalanylisocytidine triffuoroacetate salt (19), $\tau\left(\mathrm{CD}_{3} \mathrm{OD}\right) 2.31(1 \mathrm{H}, \mathrm{d}$, $6-\mathrm{H} ; J_{6.5} 7.8 \mathrm{~Hz}$), $2.78(5 \mathrm{H}, \mathrm{s}$, aromatic), $4.22(1 \mathrm{H}, \mathrm{d}$, $\left.5-\mathrm{H} ; J_{5.6} 7.8 \mathrm{~Hz}\right)$, and 8.42 and $8.66\left(2 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right)$. $2^{\prime}, 3^{\prime}$-O-Ethoxymethylene-5,6-dihydroisocytidine (20).-A solution of $2^{\prime}, 3^{\prime}-O$-ethoxymethyleneisocytidine (9) (100 mg , 0.3 mmol) in methanol (15 ml) was hydrogenated over 5% rhodium-carbon (90 mg) at $55 \mathrm{lb} \mathrm{in}^{-2}$ for 5 h . Work-up as
for $2^{\prime}, 3^{\prime}-O$-isopropylidene-5,6-dihydrouridine ${ }^{22}$ gave a foam in quantitative yield; $\left.[\alpha]_{\mathrm{D}}{ }^{24}-11^{\circ}(c) 0.8\right)$ (Found: C, 45.2; $\mathrm{H}, 6.25 ; \mathrm{N}, 13.05 . \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6}, \mathrm{H}_{2} \mathrm{O}$ requires C , $45.15 ; \mathrm{H}, 6.65 ; \mathrm{N}, 13.15 \%)$, $\lambda_{\text {max. }} 207$ and $239 \mathrm{~nm}(\log \varepsilon$ 4.12 and 4.14), $\lambda_{\text {max. }} 222 \mathrm{~nm}(\log \varepsilon 3.94)$; $\nu_{\max } 3448 \mathrm{br}$, $2976,1736,1645 \mathrm{br}$, and $1608 \mathrm{~cm}^{-1}$; $\tau\left(\mathrm{CD}_{3} \mathrm{OD}\right) 6.33$ and $6.38\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{O} ; J_{\mathrm{Et}} 7.0 \mathrm{~Hz}\right), 6.37\left(2 \mathrm{H}, \mathrm{t}, 6-\mathrm{H}_{2} ; J_{6.5}\right.$ $6.7 \mathrm{~Hz}), 7.45\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2} ; J_{5.6} 6.7 \mathrm{~Hz}\right)$, and 8.76 and 8.82 ($3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}$; $J_{\mathrm{Et}} 7.0 \mathrm{~Hz}$).

2-N-(Glycylglycyl)-5,6-dihydroisocytosine (21).-A solution of 2 - N-(glycylglycyl) isocytosine ($40 \mathrm{mg}, 0.178 \mathrm{mmol}$) in distilled water (2 ml) was hydrogenated over 5% rhodiumcarbon (40 mg) at $50 \mathrm{lb} \mathrm{in}{ }^{-2}$ for 16 h as described above to give the product (21) ($33.5 \mathrm{mg}, 83 \%$), m.p. $290-300{ }^{\circ} \mathrm{C}$ (decomp.) (from 80\% methanol) (Found: C, 42.0: H, $5.85 ; \mathrm{N}, 30.45 . \quad \mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}$ requires $\mathrm{C}, 42.3 ; \mathrm{H}, 5.75$; $\mathrm{N}, 30.8 \%$), $\nu_{\text {max }} 3205,3030 \mathrm{br}, 2865$, and $1686 \mathrm{~cm}^{-1}$.

5,6-Dihydro- ${ }^{\prime}, 3^{\prime}$-O-isopropylidene-2-N-(N-t-butoxycar-
bonylglycyl)isocytidine (22).-Compound (7) (110 mg, 0.25 mmol), hydrogenated as described above, gave a foam (100%); $[\alpha]_{\mathfrak{p}}{ }^{22}-47.8^{\circ}(c 0.56)$ (Found: C, 51.7 ; H, 7.1; $\mathrm{N}, 12.45 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{8}$ requires $\mathrm{C}, 51.55 ; \mathrm{H}, 6.85 ; \mathrm{N}$,
12.65%) ; $\lambda_{\text {max. }}$ 234sh and $259 \mathrm{~nm}(\log \varepsilon 4.06$ and 4.21), $\lambda_{\text {max. }} 207 \mathrm{~nm}(\log \varepsilon 3.82)$; $\nu_{\text {max. }} 3412 \mathrm{br}, 2967,2907$, 1704 br , and $1582 \mathrm{br} \mathrm{cm}{ }^{-1}$; $\tau 6.33\left(2 \mathrm{H}, \mathrm{t}, 6-\mathrm{H}_{2} ; J_{6.5} 6.7\right.$ Hz), $7.35\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2} ; J_{5.6} 6.7 \mathrm{~Hz}\right.$), 8.40 and 8.62 (2 $\times 3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}$), and $8.57\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$.

5,6-Dihydro- $2^{\prime}, 3^{\prime}$-O-isopropylidene-2-N-(N-t-butoxycar-bonyl-L- β-cyclohexylalanyl)isocytidine (23).-Compound (5) ($106 \mathrm{mg}, 0.2 \mathrm{mmol}$), hydrogenated as described above, yielded the crystalline product (23) (99\%), m.p. $161-163{ }^{\circ} \mathrm{C}$ (from methylene chloride-n-hexane); $[\alpha]_{\mathrm{D}}{ }^{22}-50.7^{\circ}$ (c 0.88) (Found: C, $57.8 ; \mathrm{H}, 7.8 ; \mathrm{N}, 10.1 . \quad \mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{8}$ requires C , $57.95 ; \mathrm{H}, 7.85 ; \mathrm{N}, 10.4 \%), \lambda_{\text {max. }} 227$ and $260 \mathrm{~nm}(\log \varepsilon 4.03$ and 4.25), $\lambda_{\text {min. }} 206$ and $238 \mathrm{~nm}\left(\log \varepsilon 3.82\right.$ and 3.98) ; $\nu_{\text {max. }}$ $3484,3448,2994,2941,2865,1718,1672$, and 1597 br $\mathrm{cm}^{-1} ; \tau 6.30\left(2 \mathrm{H}, \mathrm{t}, 6-\mathrm{H}_{2} ; J_{6.5} \mathrm{~Hz}\right), 7.30\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{H}_{2} ;\right.$ $\left.J_{5.6} 6.5 \mathrm{~Hz}\right), 8.40$ and $8.62\left(2 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 8.57(9 \mathrm{H}, \mathrm{s}$, Bu^{t}), and 8.05-9.0 (11 H, m, cyclohexyl).

We thank Mrs. E. Furić for technical assistance and Mrs. M. Tonković and Mrs. Lj. Babić for microanalyses.

[^0]: 9 A. Bendick and H. Rosenkranz, Progr. Nucleic Acid Res., 1963, 1, 219.
 ${ }^{10}$ M. E. Balis, J. S. Salser, and A. Elder, Nature, 1964, 203, 1170.
 ${ }^{11}$ I. L. Doerr and J. J. Fox, J. Org. Chem., 1967, 32, 1462.
 ${ }^{12}$ J. C. Sheehan and G. P. Hess, J. Amer. Chem. Soc., 1955, 777, 1067.
 ${ }^{13}$ N. Baggett, A. B. Foster, and J. M. Webber, Chem. and Ind., 1965, 136.
 ${ }_{14}$ Z. A. Savarova, N. I. Sokolova, L. A. Boykova, M. A. Prokofiev, Zhur. obschei Khim., 1959, 29, 2917.

